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ABSTRACT

This brief paper proposes a method for tuning the parameters of a variable structure

controller. The approach presented extracts the error at the output of the controller and

applies a nonlinear tuning law using this error measure. The adaptation mechanism drives

the state tracking error vector to the sliding hypersurface and maintains the sliding mode.

In the simulations, the approach presented has been tested on the control of Duffing

oscillator and the analytical claims have been justified under the existence of

measurement noise, uncertainty and large nonzero initial errors.
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1. INTRODUCTION

Parameter tuning in adaptive control systems has been a core issue in dealing with

uncertainties and imprecision. One good alternative to robustify the control system

against disturbances and uncertainties is to exploit a Variable Structure Control (VSC)

scheme (Hung, Gao & Hung, 1993; Utkin, 1992; Slotine & Li, 1991). The scheme is

well-known with its robustness against unmodeled dynamics, disturbances, time delays

and nonlinearities (Young, Utkin & Ozguner, 1999). A later trend in the field of VSC
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design is to exploit the strength of the technique in parameter tuning issues (Sira-Ramirez

& Colina-Morles, 1995; Yu, Zhihong & Rahman, 1998; Parma, Braga & Menezes, 1998).

The resulting system exhibits the robustness and invariance properties inherited from

VSC technique. As long as the target output of the adaptive system is known, the

utilization of the mentioned techniques reveals good performance. However, in control

applications, the lack of a priori knowledge on the target control signal leads the designer

to seek for alternative methods predicting the error on the control signal (Efe, Kaynak &

Yu, 2000)

This brief paper presents a method for extracting the error on the control signal

particularly for the variable structure control purpose. In the second section, we describe

the proposed technique for control error calculation. Simulation studies are presented

next, and the concluding remarks are given at the end of the paper.

2. PROPOSED APPROACH

Consider a nonlinear and non-autonomous system ( ) τθθθθ += − tf rr ,,...,, )1()(
� , where f(.) is

an unknown function, T)1( ],...,,[ −= rθθθθ �  is the state vector, τ is the control input to the

system and t is the time variable. Defining T)1( ],...,,[ −= r
dddd θθθθ �  as the desired state vector

and e=θ−θd as the error vector, one can set the sliding hypersurface as ( ) eesp
TΛ= . The

VSC design framework prescribes that the entries of the vector Λ are the coefficients

seen in the analytic expansion of ( ) ( )d
r

p dtds θθλ −+= −1/  or more generally they are the

coefficients of a Hurwitz polynomial. Here λ is a positive constant. Let Vp be a candidate

Lyapunov function given as ( ) 2/2
ppp ssV = ; if the prescribed control signal satisfies

( ) ( )pppp sssV sgnξ−=�  with ξ > 0, the negative definiteness of the time derivative of the

above Lyapunov function is ensured. The conventional design postulates the control

sequence given as

( ) ( )( )( )∑ −
=

− +ΛΛ+−−= 1
1

)(1)( sgn, r
i p

i
ir

r
dsmc setf ξθθτ (1)
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which ensures ( ) 0<pp sV� . More explicitly, if (1) is substituted into the system dynamics, it

is seen that ( )pp ss sgnξ−=�  is enforced automatically. Apparently, sp will converge to zero

in finite time, which means that the error vector is confined to the sliding manifold after

some time. The behavior thereafter is convergent since it takes place in the close vicinity

of the sliding manifold, i.e. the error vector converges to the origin as prescribed by the

manifold equation.

Remark 1: When the control in (1) is applied to the system, we call the resulting

behavior as the target Sliding Mode Control (SMC) and the input vector leading to it as

the target control sequence (τsmc). Since the functional form of the function f is not

known, it should be obvious that τsmc cannot be constructed by following the traditional

SMC design approach.

Definition 2: Given the system ( ) τθθ += tfr ,)( , and a desired trajectory θd(t) for t ≥ 0, the

input sequence satisfying the differential equation ( ) dd
r

d tf τθθ  ,)( +=  is defined to be the

idealized control sequence denoted by τd, and the differential equation itself is defined to

be the reference SMC model. Mathematically, the existence of such a model and the

sequence means that the system perfectly follows the desired trajectory if both the

idealized control sequence is known and the initial conditions are set as θ(t=0)= θd(t=0),

more explicitly e(t) ≡ 0 for ∀ t ≥ 0. Undoubtedly, such an idealized control sequence will

not be a norm-bounded signal when there are step-like changes in the vector of command

trajectories or when the initial errors are nonzero. It is therefore that the reference SMC

model is an abstraction due to the limitations of the physical reality, but the concept of

idealized control sequence should be viewed as the synthesis of the command signal θd

from the time solution of the given differential equation.

Fact 3: If the target control sequence formulated in (1) were applied to the system, the

idealized control sequence would be the steady state solution of the control signal, i.e.

limt→∞τ = τd.
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Defining the control error by sc�τ − τd and rewriting the control signal with the idealized

SMC model yields ( )( )( )∑ −
=

− +ΛΛ+∆−= 1
1

)(1 sgnr
i p

i
ird sef ξττ , where ( ) ( )tftff d ,, θθ −=∆ . The

target control sequence becomes identical to the idealized control sequence, i.e. τ ≡ τd, as

long as the condition given below holds true.

( )( )∑ −
=

− +ΛΛ−=∆ 1
1

)(1 sgnr
i p

i
ir sef ξ . (2)

However, this condition is of no practical importance as we do not have the analytic form

of the function f. Therefore, one should consider this equality as an equality to be

enforced instead of an equality that holds true all the time, because its implication is sc=0,

which is the aim of the design.

After straightforward manipulations, ps�  can be rewritten as ( ) ∑ −
= Λ++∆Λ= 1
1

)(r
i

i
icrp esfs� .

Inserting (2) into ps�  and solving for sc gives

( )( )pprc sss sgn1 ξ+Λ= −
� . (3)

Remark 4: It should be noted that the application of τd to the system with zero initial

errors would lead to e(t) ≡ 0 for ∀ t ≥ 0, however, τd is not a computable quantity. On the

other hand, the application of τsmc to the system will lead to sp=0 for ∀ t ≥ th, where th is

the hitting time, and the origin would be reached according to the dynamics described by

the sliding manifold, but knowing τsmc implies the availability of the function f (.). If one

analyzes (3), a control signal minimizing the magnitude of sc would introduce all

trajectories in the error space to tend to the sliding manifold, i.e. (2) is enforced without

knowing the description of the function f (.) explicitly. Consequently, the tendency of

such a control scheme would be to generate the target SMC sequence of (1) by utilizing

the computable quantities.
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Now consider the feedback control loop illustrated in Figure 1, and define the Lyapunov

function ( ) 2/2
ccc ssV = , which is a measure of how well the controller performs.

Remark 5: An adaptation algorithm ensuring ( ) 0<cc sV�  when sc≠0 enforces (2) to hold

true and creates the predefined sliding regime after a reaching mode lasting until the

hitting time denoted by th, beyond which sc=0 as the system is in the sliding regime.

Consider the controller uTφτ = , where φ is the vector of adjustable parameters and

TT ]1[eu = . Choose the following Lyapunov function candidate:

2

2

1
 

φ
ρµ

∂
∂+= c

cA
V

VV (4)

where, ||•|| is the Euclidean norm and, µ and ρ are positive constants determining the

relative importance of the terms.

Remark 6. A likely question that can be raised at this point would be how such a

Lyapunov function is selected. After straightforward manipulations, it can be shown that

VA=α(t)Vc, where α(t)=µ+ρuTu, or equivalently, α(t)=µ+ρ+ρeTe. Referring to Figure 2,

which visualizes VA for µ=1 and ρ=10, a direct conclusion would be the fact that as ||e||

increases, the two flaps become steep, and as ||e|| decreases the local property of the

surface gets shallower. Choosing such a Lyapunov function will therefore enable us to

represent how well the controller performs as well as how well the plant performs jointly.

As seen from the contour plot of Figure 2, the surface is symmetric with respect to sc=0

line, and the cost of any disturbance leading to an increment in ||e|| will be more than the

identical disturbance arising around sc=0 and ||e||=0. This is particularly important since

the tuning activity will be trying to cope with noise, which is substantially effective

during the sliding mode, i.e. when sc=0 is reached.
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In order not to violate the constraints of the physical reality, the following bound

conditions are imposed: φφ B≤ , uBu ≤ , uBu
�

� ≤ , ττ B≤ , 
d

Bd ττ ≤  and 
d

Bd ττ
�

� ≤ .

Theorem 7: If the adaptation strategy for the adjustable parameters of the controller is

chosen as

( ) ( )csuuuIK sgn
1T −

+−= ρµφ� (5)

with K is a sufficiently large constant satisfying ( )( ) ( ) uuuu BBBBBBBBK
dd ��� τττφ ρρµ ++++> 2 ;

then the negative definiteness of the time derivative of the augmented Lyapunov function

in (4) is ensured.

Proof: Evaluating the time derivative of the Lyapunov function in (4) yields
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    . (6)

Since the controller is uTφτ =  and sc�τ−τd, following terms can be calculated:

( ) TT/ usV cc =∂∂ φ , ( ) TT / φcc suV =∂∂ , cdc sV −=∂∂ τ / , TT2 / uuVc =∂∂∂ φφ ,

IsuuV cc +=∂∂∂ TT2 / φφ , and uV dc −=∂∂∂ τφ/2 . The time derivative in (6) can now be

rearranged as follows;

( ) ( )( ) uusuuusuuIusV cdccA ���

��

T2TTTT    ρτφρµφρµ +−+++=

( )( ) uusuuusuusK cdcc ���

T2TTT  ρτφρµ +−++−=

( )( ) uusuuussK cdcc ���

T2TT  ρτφρµ +−++−≤

( )( ) uusBBBBssK cuucc d
�

��

T22  ρρµ τφ ++++−≤

( )( ) ( ) uucuucc BBBBsBBBBssK
dd ��� τττφ ρρµ +++++−≤  2

(7)
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The last inequality above is due to the fact that ( ) ( )
d

BBsss cdcc ττττ +≤−=2 . The selection

of the parameter K ensures the negative definiteness of the time derivative of the

Lyapunov function in (4) and proves Theorem 7.

Since ( ) ( )uu

uu
IuuI

T

T1T 1

ρµµ
ρ

µ
ρµ

+
−=+

−
, the tuning law of (5) can be paraphrased as

( )cs
uu

u
K sgn

Tρµ
φ

+
−=� . Apparently if eTe ≤ ε holds true, where ε>0, the first r entries of

the parameter vector will dominantly be influenced by the noise terms (ηi) corrupting the

state vector. More explicitly, )()( i
d

i θθ ≅  and

( ) ( ) ( )c
i

c
r
j

j
d

j

i
i

d
i

i sKsK sgnsgn

1

2 )()(

)()(

ρµ
η

θθρρµ

ηθθ
φ

+
−≈

−++

+−
−=

∑ =

�  with i=1,…,r. However, the

(r+1)th entry of the parameter vector will be tuned by ( )cr s
uu

K sgn
1

T1
ρµ

φ
+

−=+
� . Therefore,

once eTe ≤ ε is satisfied, the tuning of the first r parameters are stopped and only the

(r+1)th entry is tuned. If eTe > ε, all adjustable parameters are tuned. This mechanism

ensures that the parameter tuning due to the noise sequence is suppressed in the vicinity

of the origin. Since K is designed for the worst possible conditions, the time derivative in

(7) will always be negative.

Remark 8. Given system of structure ( ) τθθ += tfr ,)( , where the function f is unknown,

and a desired trajectory θd(t), assuming that the SMC task is achievable, utilization of (3)

as the control error together with the tuning law of (5) for the controller uTφτ =  enforces

the desired reaching mode followed by the sliding regime for some set of design

parameters µ, ρ, ξ and Λ.

3. SIMULATION STUDY

In the simulations, we test the performance of the proposed scheme on the control of a

Duffing oscillator described by the following differential equation;
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( ) τωθθθθ ++−−−= tqppp dcos3
21

��� (9)

where, p1 = 1.1, p2 = 1, p = 0.4, q = 2.1 and ωd = 1.8. The control problem is to enforce

the states to the periodic orbit described as ( )dd θθ sin=��  with θd(0) = 1 and dθ� (0) = 0. The

identification and control of the system in (9) have previously been studied by Poznyak,

Yu & Sanchez (1999). It must be noted that the enforced trajectory is radically different

from the stable limit cycle of the system dynamics, and this fact requires continuous

control effort.

In the simulation results presented, we set µ=1, ρ=10 and Λ=[1 1]T, ξ=1, K=1000 and

ε=0.001. The block diagram of the control system is depicted in Figure 1 in detail. The

measurement noise sequences for both states are Gaussian distributed, zero mean and

both have equal standard deviations, which is 0.0025. The disturbance caused by the

measurement noise satisfies |ηi(t)|≤0.001 with probability very close to unity.

In Figure 3, the phase space behavior for θ(0)=−1 and θ� (0)=0 have been demonstrated. The

plot seen figures out that ee −=�  (λ=1 or sp=0) line is the attracting invariant. Clearly the

error vector is guided towards the sliding manifold and due to the design presented, it is

forced to remain in the vicinity of the attracting loci without explicitly knowing the

analytical details of the function f. However, it can fairly be claimed that the sliding

manifold is most probably a locally invariant subspace as the results heavily depend upon

the unknown function f.

In Figure 4, the applied control signal and the evolution of the controller parameters are

illustrated. Although the exact use of the sgn(.) function in (3) introduces some amount of

high frequency components, the produced control sequence is sufficiently smooth and

reasonable in magnitude. The evolution of the controller parameters (φ=[ φ1 φ2 φ3]
T) is

apparently bounded as seen in the figure.
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Finally, the presented technique is computationally inexpensive, for the considered

application, the total number of floating point operations for the control calculation and

tuning is equal to 36 with 2 comparisons for sign function evaluations. This result

stipulates that the computational complexity of the presented technique is affordable even

for low speed microprocessors.

4. CONCLUSIONS

This brief paper introduces a novel approach for creating and maintaining the sliding

motion in the behavior of an uncertain system. The system under control is of unknown

structure and it is under the ordinary feedback loop with an adaptive variable structure

controller. The presented results have demonstrated that the predefined sliding regime

could be created and maintained if the controller parameters are tuned in such a way that

the reaching is enforced. Computational simplicity of the method is another prominent

feature that should be emphasized.

Future research aims to discover the properties of the class of functions determining the

applicability range of the approach.
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Figure 1. Control system structure

Figure 2. 3D Appearance and contour plot of VA for µ=1, ρ=10
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0 5 10 15 20 25 30 35 40 45 50
-50

0

50

100

150

200

Time (sec)

τ

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

Time (sec)

φ 1

0 5 10 15 20 25 30 35 40 45 50
-20

-15

-10

-5

0

Time (sec)

φ 2

0 5 10 15 20 25 30 35 40 45 50
-50

0

50

100

150

200

Time (sec)

φ 3
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