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Sliding Mode Measurement Feedback Control
for Antilock Braking Systems
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Abstract—We describe a nonlinear observer-based design for
control of vehicle traction that is important in providing safety
and obtaining desired longitudinal vehicle motion. First, a robust
sliding mode controller is designed to maintain the wheel slip
at any given value. Simulations show that longitudinal traction
controller is capable of controlling the vehicle with parameter
deviations and disturbances. The direct state feedback is then
replaced with nonlinear observers to estimate the vehicle velocity
from the output of the system (i.e., wheel velocity). The nonlinear
model of the system is shown locally observable. The effects and
drawbacks of the extended Kalman filters and sliding observers
are shown via simulations. The sliding observer is found promis-
ing while the extended Kalman filter is unsatisfactory due to
unpredictable changes in the road conditions.

Index Terms—Adaptive control, nonlinear observers, state es-
timation, variable structure systems, wheel slip control.

I. INTRODUCTION

T HE control of ground vehicle motions is becoming im-
portant due to recent research efforts on intelligent trans-

portation systems, and especially, on automated highway sys-
tems [10], [8], [22]. In order to implement an advanced vehicle
control system while obtaining desired vehicle motion, and
providing safety, vehicle traction control should be realized.
Traction control systems can be designed to satisfy various
objectives of a single vehicle system or a platoon of closely
spaced vehicles, such as assuring ride quality and passenger
comfort.

Vehicle traction force directly depends on the friction co-
efficient between road and tire, which in turn depends on the
wheel slip as well as road conditions. It is possible to influence
traction force by varying the wheel slip, a nonlinear function
of the wheel velocity and the vehicle velocity. A sliding mode
controller to maintain the wheel slip at any given value is
designed by Kachroo and Tomizuka [5]. This longitudinal
traction controller is found to be giving better results than
the conventional controllers are. On the other hand, a typical
ABS system can only sense the angular wheel velocity and/or
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Fig. 1. The structure of the controller/observer system.

acceleration of the vehicle to estimate the wheel slip. Vehicle
traction control can greatly improve the performance of vehicle
motion and stability by providing anti-skid braking and anti-
spin acceleration. The design of traction controller is based
on the assumption that vehicle and wheel angular velocities
are both available on-line by direct measurements and/or
estimations. As angular wheel velocity is directly measured,
only vehicle velocity is needed to estimate wheel slip. Two
of the many methods for estimating the vehicle velocity are
using magnetic markers imbedded in the pavement and the
use of an accelerometer to calculate velocity by integration
[8]. Both methods have drawbacks: one requires an accurate
sensing system and infrastructure, the other frequent updates
because of accumulation of integration errors.

In this paper, we will show that both wheel and vehicle
speeds (states of the nonlinear system model) are observable
from the output (wheel angular speed) for our vehicle and
wheel dynamics model. Conventional ABS systems use ve-
locity and acceleration data of the vehicle with a lookup table
to calculate braking torque (or brake pressure) value. The
aim of these controllers is to maintain the wheel slip at the
peak of curve (as discussed in Section II), but due
to the qualitative design, that is not always guaranteed. We
propose that an analytic design with full state feedback that
will improve the performance of ABS; but we will try to obtain
similar results using only partial state feedback. The overall
system structure is given in Fig. 1.

A nonlinear observer will be designed to fit the requirements
of the two dimensional system describing the vehicle dynam-
ics. The verification of the design is done via simulation on
Matlab/Simulink. The design of this observer will be a step
toward the realization of more complex observers necessary
for the headway control of vehicles with limited sensing (i.e.,
only the headway information).

1063–6536/99$10.00 1999 IEEE
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TABLE I
WHEEL AND VEHICLE PARAMETERS

!w Angular speed of the wheel
Jw Moment of inertia of the wheel
Te Shaft torque from the engine
Tb Brake torque

rw Radius of the wheel
Ft Tractive force
Fw Wheel viscous friction
Nv Normal reaction force from the ground
!v Angular speed of the vehicle
Fv Wind drag force (function of vehicle velocity)
Mv Vehicle mass
Nw Number of driving wheels (acceleration) or the total number of

wheels (braking).

In the next section, we introduce the system dynamics and
resulting nonlinear differential equations. The use of sliding
mode control for the system at hand, simulation results for
the controller, discussion on the observability of the system
and nonlinear observers will follow. Simulation results with
observers in the feedback loop are given in Section VII.
Appendix A includes the derivation of the limiting function for
the sliding controller, while Appendix B details the necessary
steps for checking the observability of the system.

II. SYSTEM DYNAMICS

In order to design a controller, a good representative model
of the system is needed. In this section, we will describe the
mathematical model for vehicle traction control. This model
will then be used for system analysis, design of control laws
and computer simulations. The model described in the paper,
although relatively simple, retains the essential characteristics
of the actual system. We will not discuss the stability of the
system, but only state the necessary conditions.

Our model identifies the wheel speed and vehicle speed as
state variables, and the torque applied to the wheel as the
input. The state equations are the result of the application of
Newton’s law to wheel and vehicle dynamics. The dynamic
equation for the angular motion of the wheel is given as

(1)

All the quantities in this equation are defined in Table I.
The total torque consists of shaft torque from the engine,
which is opposed by the break torque and the torque com-
ponents due to tire tractive force and wheel friction force.
The wheel viscous friction force developed on the tire-road
contact surface depends on the wheel slip, which is defined as
the difference between the vehicle and tire speeds, normalized
by the maximum of these velocity values [vehicle speed for
braking, wheel speed for acceleration; see (2)]. The engine
torque and the effective moment of inertia of driving wheel
depend on the transmission gearshifts.

Applying a driving torque or a braking torque to a pneumatic
tire produces a tractive force at the tire-road contact patch
[23]. The driving torque produces compression at the tire tread
in front and within the contact patch. Consequently, the tire
travels less distance than it would if it were free rolling.

Fig. 2. Typical� � � curves for different road conditions.

Similarly, when a braking torque is applied, it produces a
tension at the tire tread within the contact patch and at the
front. Because of this tension, the tire travels more distance
than it would during free rolling. This phenomenon is called
the deformation slip orwheel slip[19], [23]. Mathematically,
the wheel slip is defined as

(2)

where is the vehicle angular velocity

(3)

which is equal to the linear vehicle velocity divided by the
radius of the wheel. The tractive force is given by

(4)

where the normal tire reaction force , depends on vehicle
parameters such as the mass, location of the center of gravity,
and the steering and suspension dynamics. The adhesion
coefficient , which is the ratio between the tire tractive force
and the normal road, depends on the tire-road conditions and
the value of the wheel slip [3]. Fig. 2 shows a typical
curve [20]. A more mathematical description of the tire model
is described by Peng and Tomizuka [13]. In our simulations,
the function is used for a nominal
curve, where and are the peak values. This function
gives values compatible with experimental data given in the
literature [23], especially in the range

For various road conditions, the curves have different peak
values and slopes. The adhesion coefficient—wheel slip char-
acteristics are also influenced by operational parameters like
speed and vertical load. The peak value for adhesion coeffi-
cient may have values between 0.1 (icy road) and 0.9 (dry
asphalt and concrete; see Fig. 2).

The model for wheel dynamics is given in Fig. 3. The figure
shows the parameters in Table I for acceleration case, for
which tractive force and wheel friction are in the direction
of motion. The wheel is rotating in clockwise direction, and
slipping against the ground (i.e., The slipping
produces the tractive force toward right causing the vehicle to
accelerate. In the case of deceleration, the wheel still rotates
in the clockwise direction, but skids against the ground (i.e.,

). The skidding produces the tractive force toward
left causing the vehicle to decelerate.
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Fig. 3. Wheel dynamics.

The linear acceleration of the vehicle is governed by the
tractive forces from the wheels and the aerodynamic friction
force. The tractive force is the average friction force of the
driving wheels for acceleration and the average friction force
of all wheels for deceleration. The dynamic equation for the
vehicle motion is

(5)

The linear acceleration of the vehicle is equal to the differ-
ence between the total tractive force available at the tire-road
contact and the aerodynamic drag on the vehicle, divided by
the mass of the vehicle. The total tractive force is equal to
the product of the average friction force, and the number
of relevant wheels The aerodynamic drag is a nonlinear
function of the vehicle velocity and is highly dependent on
weather conditions. It is usually proportional to the square of
the vehicle velocity.

A. Combined System and the Slip

The dynamic equation of the whole system can be written in
state variable form by defining convenient state variables. We
chose the state variables as the wheel and vehicle velocities

(6)

Now, we can rewrite (1) and (5) as

(7)

where

(8)

Fig. 4. Vehicle-Brake-road dynamics: One-wheel model.

The block diagram representation of the combined dynamic
system is shown in Fig. 4. The control input is the applied
torque at the wheels, which is equal to the difference between
the shaft torque from the engine and the braking torque. During
acceleration, engine torque is the primary input where as
during deceleration it is the braking torque. The wheel slip
is chosen here as the controlled variable for traction control
algorithms because of its strong influence on the tractive force
between the tire and the road.

We will first assume that wheel slip is calculated from
(2) by using the measurements of wheel angular velocity
and the estimated value of the vehicle velocity from either
the accelerometer data or the magnetic marker data. Then,
instead of the full state feedback, we will use a more realistic
model output, where only the wheel velocity is measured, and
insert a nonlinear estimator into the feedback loop (Fig. 1).
By controlling the wheel slip, we control the tractive force to
obtain the desired output, namely wheel and vehicle velocities,
from the system. In order to control the slip, it is convenient to
have the system dynamic equations in terms of the wheel slip.
Since the functional relationship between the wheel slip and
the state variables is different for acceleration and deceleration,
we will only derive the equations for the deceleration case. The
dynamic wheel slip equation for the acceleration case is also
given, without derivations. During deceleration, the condition

is satisfied, and therefore the wheel slip is defined as

(9)

Taking the time derivative, we obtain

(10)

Substituting (7)–(9) into (10), we get (11), shown at the
bottom of the next page. This gives the wheel slip equation
for deceleration case. The equation is nonlinear and involves
uncertainties in its parameters. The nonlinear characteristic
equation is caused by the following factors.

1) The relationship of wheel slip with wheel velocity and
vehicle velocity is nonlinear.

2) The relationship is nonlinear.
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3) There are multiplicative terms in the equation.
4) Functions and are nonlinear.

In the case of acceleration, the equation is also nonlinear
and involves uncertainties as shown in (12) at the bottom of
the page. The local stability of the nonlinear system can be
studied by linearizing the system around its equilibrium point.
Kachroo and Tomizuka [4] stated that the system is stable in
the deceleration case if the following condition is satisfied:

(13)

In the acceleration case, similar (but slightly different) con-
ditions are obtained, using the eigenvalues of the Jacobian
matrix for the nonlinear system.

III. SLIDING MODE CONTROL OF THE WHEEL SLIP

For wheel slip control, a nonlinear control strategy based on
sliding mode is chosen. Sliding mode controllers are known
to be robust to parametric uncertainties [17]. The following is
the derivation of the sliding mode control law for wheel slip
regulation. The slip dynamic equation for deceleration (11)
can be written as

(14)

where

(15)

Since the system is of first order, the switching surface
is defined by equating the sliding variable, defined below,
to zero

(16)

where denotes the desired slip, and is the error. The
nonlinear function is estimated as , and the estimation
error on is assumed to be bounded by some known function

, so that (See Appendix A for the derivation
of for this particular application.) The control gainis
bounded as The control gain and
its bounds can be time varying or state dependent. Since the
control input is multiplied by the control gain in the dynamics,
the geometric mean of the lower and upper bounds of the gain,

, is taken as the estimate of The controller
is designed as

(17)

where

and (18)

(19)

A finite time is taken to reach the switching surface and
the stability of the system is guaranteed with an exponential
convergence once the switching surface is encountered, if the
sliding gain is chosen as

(20)

The condition of gain is direct result of the condition for the
sliding variable outside of the switching surface

(21)

that guarantees finite time to reach the surface if the initial
tracking error is not zero. By integrating the condition above,
and considering both negative and positive tracking errors, the
following bound on the time interval to reach the surface is
obtained [17]:

(22)

Switching control laws are known to be not practical to
implement because of chattering. Chattering is caused by
nonideal switching of the variable around the switching
surface. Delay in digital implementation causesto pass to
the other side of the surface , which in turn produces
chattering. A practical approach for avoiding chattering is to
introduce a region around so that changes its value
continuously [5], [6]. A boundary layer of fixed width
around the switching surface, and the function is
defined as

for

otherwise.
(23)

The parameters and are

(24)

and the definition of the control input is changed to

(25)

(11)

(12)
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(a) (b)

(c) (d)

Fig. 5. Simulation results: (a) vehicle and wheel speeds, (b) wheel slip, (c)
braking torque, and (d) sliding variable as functions of time.

The bandwidth of the filter for variable is given by [ ].
Note that the second term in (25) acts as a PI controller in
the region The first term, given by (19), attempts to
cancel the nonlinear term in (14), and further adds the desired
dynamics. If the cancellation of the nonlinear term is perfect,
i.e., , (14), (19), (23), and (25) will result in a
linear error equation with no forcing term, which implies that
the slip error as well as the sliding variable, all converge to
zero. However, the cancellation can never be perfect, which
can be easily understood by the presence of in (15). The
integrator can absorb the error due to imperfect cancellation
and assures superior performance.

IV. SIMULATION RESULTS WITH DIRECT STATE FEEDBACK

Fig. 5 shows the result of a simulation for which the initial
and desired values of the wheel slip are0.02 and 0.12,
respectively. In other words, the vehicle is already braking, but
a better traction value is required. Maximum braking torque
is limited at 1000 Nm. Also note that the peak value of the
nominal curve used in the sliding mode controller is 0.7, while
the actual road conditions is simulated using a peak value of
0.8.

The plot of the vehicle and wheel velocities in Fig. 5
indicates that the braking action causes the wheel slip to reach
its desired value quickly. The average deceleration for the first
second is approximately 0.56 g. As seen in the second figure,
the time to reach the boundary layer is larger than the value
given by s. This is due
to the fact that the control input is limited. Furthermore, this
example assumes no rate of change limitations on the applied
brake. It is possible for the braking mechanism to introduce a

(a) (b)

(c) (d)

Fig. 6. Simulation results: (a) vehicle and wheel speeds, (b) wheel slip, (c)
braking torque, and (d) sliding variable as functions of time.

delay to the applied torque, which would cause a longer time
interval to reach the switching surface.

The function isat used in the boundary layer eliminates the
chattering; the applied torque is smooth. The sliding variable
reaches the boundary layer, and then approaches zero.

In the simulation example given in Fig. 6, the maximum
torque value is increased. Thus, the time to reach the desired
value of the wheel slip is distinctly less than the previous
example. In this case, the desired wheel slip is reached in
approximately 0.1 s. Fig. 6 also shows the effect of the change
in the function parameters, road surface conditions and desired
wheel slip. Between s and s, the value of
the parameter is changed The applied torque is
changed to compensate for these changes as seen in Fig. 6.
The wheel slip (and the sliding variable) does not show any
significant deviations. Around s, we simulate a change
in the road conditions: Peak value of the curve is
decreased from 0.8 to 0.5. (The vehicle travels along an icy
patch for approximately 0.5 s.) Again, the controller output
is quickly changed to compensate, while the wheel slip is
unaffected. Third, we increase the desired value of the slip
around s. The braking torque drastically increases to
drive the variable to the sliding surface, and the new value
is reached again in less than 0.1 s.

V. OBSERVABILITY OF THE SYSTEM

To be able to use an estimator for the states of the dynamic
model, we first have to prove that the states are observable
from the output. The wheel angular speed that can be easily
measured is defined as the output for the vehicle model we
described in (7). Thus, the system equations become

(26)
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where, from (7), the functions are defined as

(27)

For the system given in (26), it has been proven that the system
is locally observableat if the dimension of the Jacobian of
the observability vector, is equal to , where is
the dimension of the output set, and observability vector
is constructed with repeated time derivatives of the output
vector [13]

(28)

It is important to note that, unlike linear systems, the rank con-
dition, dim , guarantees only local observability.
A good treatment of the subject can be found in [12]. Let us
consider the first three rows of the observability matrix. Using
the (27), we obtain

(29a)

where and are known, and the third term is calculated
as follows:

(29b)

The Jacobian of the observability matrix is then (See
Appendix B for the evaluation of the term) shown in (30)
at the bottom of the page. The Jacobian looses rank whenever
the element (2,1) and are both zero, and it is full rank
otherwise. We show, in Appendix B, that these two terms are
never zero at the same time. This proves that the system is
locally observable everywhere. Therefore, it is possible to use
a nonlinear observer to estimate the states of the system using
only the output, i.e., the wheel speed.

VI. NONLINEAR OBSERVERS

Many researchers have worked on the development of state
estimators for nonlinear and/or uncertain systems. Misawa and
Hedrick [9] gave a state-of-the-art survey of the nonlinear
observers. This work discusses several different methods in-
cluding extended Kalman filter and sliding observers as well

as others. We use and compare extended Kalman filter and
sliding observer for our state estimation, and briefly introduce
these methods here.

A. Extended Kalman Filter

Kalman introduced the concept of an optimal linear filter
in 1960 [7]. Kalman filter is known to minimize the mean
square estimation error, and assumes that the dynamic system
whose states are to be estimated can be described as a set of
linear differential equations. A natural extension of this filter
is extended Kalman filter[2], [18], which we choose as one
of our observers. For a system model given as

(31)

where and
and are zero mean Gaussian noises with uncorrelated noise
intensities and the initial conditions are assumed to be

For this system, the filter is given as

(32)

where and are the Jacobians of the functionsand
respectively. Note that the functions and are evaluated
at From (8) and (27), we obtain (omitting the
terms for clarity)

(33)

The correlation matrix elements can be evaluated using
(32). The extended Kalman filter is widely used. However,
there are some drawbacks that make this filter nonfeasible for
our application [9].

• is only an approximation of the true covariance matrix
and there is noa priori performance or stability guarantee.
In our application, the values for the covariance matrix
are stable.

(30)



ÜNSAL AND KACHROO: SLIDING MODE MEASUREMENT FEEDBACK 277

• Comparing (31) and (32), we see that the perfect system
knowledge is assumed. For this application, there is no
way of knowing the operation point on the curve,
and therefore, the estimator uses the nominal values.
However, the value of the adhesion coefficient calculated
from the nominal curve may differ from the actual value,
thus resulting in a modeling error.

• Evaluating and at can introduce (even if is
the exact model) arbitrarily large errors.

B. Sliding Observers

Sliding observers are nonlinear state estimators based on
the theory of variable structure systems [15], [21]. It was
suggested by Slotineet al. [16]. For an th order nonlinear
system of the form , and a vector
of measurements that is linearly related to the state vector

we define an observer of the following
structure:

(34)

where is our model of and are gain
matrices to be specified, and is an vector defined as

or (35)

where
For our single measurement system, the observer equations

are

(36)

where are estimates of the functions in (27), evaluated at
the estimated points. When the sliding variable is chosen as
being equal to the measurement error

(37)

The sliding condition

(38)

on the sliding surface will guarantee that the state
observations will match the actual values. In our case, the
sliding condition becomes

(39)

where The equivalent control method given by
Utkin [21] provides the approximate sliding dynamics as

(40)

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Simulation results: (a) Vehicle and wheel speeds, (b) wheel slip, (c)
braking torque, (d) sliding variable, (e) estimation errors, and (f) covariance
matrix elements as functions of time.

where are the error between the observer dynamics (36)
and the actual system dynamics (27) as defined in (39). Using
(40), we obtain the following:

(41)

As seen from the (39)–(41) above, not much can be said
about the gains and The method for finding the gain
matrices and for linear systems is given by Misawa and
Hedrick [9]. However, the equations to be solved are based on
the Jacobian of the function, and thus, are very difficult to
solve in our application. Furthermore, the indirect effects of the
states on the wheel slip, and consequently, friction coefficient
complicates the matter. Therefore, we choose the values of
the four gain coefficients by trial-and-error. The values for the
second state (wheel angular speed), which is the measurement
from the system, are easily found for a stable response. The
coefficients for the first state (vehicle angular speed) are more
difficult to set.

VII. SIMULATION RESULTS WITH THE OBSERVERS

Fig. 7 shows the result of a simulation where the extended
Kalman filter is used for state estimation. Since the system
knowledge is not perfect, i.e., the evaluation of the adhesion
coefficient is erroneous, the controller cannot drive the wheel
slip to desired value. As seen in Fig. 7, when the peak values
for the curve are not the same for the actual model
and the nonlinear estimator (0.8 and 0.7 for this example), the
wheel slip cannot reach the desired value; there is a steady-
state error. The estimation error in wheel velocity is driven to
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(a) (b)

(c) (d)

(e)

Fig. 8. Simulation results: (a) Vehicle and wheel speeds, (b) wheel slip, (c)
braking torque, (d) sliding variable, and (e) estimation errors as functions of
time.

zero due to the fact that wheel velocity is measured; however,
the estimation of vehicle velocity has a steady-state error.
Receiving only the estimated values from the observer, the
sliding mode controller “thinks” that the wheel slip is at the
desired value of 0.12 [Fig. 7(b)].

The performance of the extended Kalman filter for this
application being unsatisfactory, the estimator is replaced by a
sliding observer. Fig. 8 shows the result of a simulation with
the sliding observer where desired value of the wheel slip is
changed from 0.2 to 0.1 after 1 s. The gain coefficient for
the observer is found by trial-and-error method. The chattering
is due to the use of the saturation function that does
not include the integral term. Replacing this function with the

would eliminate the chattering, but the determination
of (more) gain coefficients for the observer would make the
initial design more difficult.

The performance of the sliding observer is satisfactory. The
error is the wheel slip estimation (and the sliding variable)
is minimal. Sliding observer is able to rack vehicle speed
(unobserved state) even though the initial estimates for the
states are different than the actual values [Fig. 8(e)]. The
response of the system to changes in the desired value of the
wheel slip is comparable to the full-state feedback design. The
steady-state error in the estimation of the first state is probably
due to the choice of the gain coefficients for the matrices
and

VIII. C ONCLUDING REMARKS

There are four main conclusions resulting from the work
presented here. These are the following.

• Sliding mode controller based on mathematical design
gives satisfactory results for this application of vehicle
traction control. Desired wheel slip value for maximum
deceleration can be achieved in minimum time, provided
that the braking system is capable of producing the
required torque.

• Since current ABS methods of measuring the vehicle
speed are not perfect, an analytical observer may provide
a better system performance. Furthermore, although the
use of magnetic makers and magnetic strips for vehicle
speed detection are shown to be feasible [11], the failure
of these systems may lead to catastrophic collisions in
an automated highway system. Therefore, an analytic
observer based design for anti-lock braking system may
prove to be very useful as a backup system.

• The performance of extended Kalman filter is poor,
mainly due to the modeling errors, which we may not
escape for applications in vehicle traction control.

• Sliding observer seems to be a good choice for this
application, since it is shown to be robust against bounded
modeling errors as described in Sections VI and VII.
However, the complicated system model renders the
analytic computation of gain matrices difficult.

Furthermore, the steady-state estimation error for nonlinear
sliding observer is partially due to the error bounds defined
for several parameters, as well as the definition of the
function estimate. A decrease in the estimation error range
results in a relatively less estimation error in vehicle speed.
Although the sliding controller and the observer are able
to handle slight changes in the road surface conditions, the
error bounds on the function are not sufficient to
compensate for significantly large changes in the road surface
characteristics. Some form of information about the road
surface may therefore improve the robustness of the wheel
slip controller, since it will enable us to adjust the function
estimation accordingly, and decrease the error range on the
function estimation with the addition of this new information.
Methods described in [14] can be used for road surface
detection.

The local observability proof of the system is based on
the simple dynamic model we assumed, and the functional
representation of the curve. Changes in the system
model and in the function description will obviously affect
the proof of observability. However, we believe that the lon-
gitudinal model we employed is representative of the vehicle
characteristics as long as the lateral movement of the vehicle
can be neglected. In addition, the functional representation
of the adhesion coefficient is a good representation of the
wheel characteristics, especially for the range the wheel slip
controller would operate.

The work presented in this paper will be continued in
the future. Our research is directed toward the analytical
determination of the gain matrices for the sliding observer.
If we can determine the gain coefficients analytically so that
the error dynamics is stable, then our method of controlling
vehicle traction for antilock braking may be a better solution to
the optimal braking problem, and a safety alternative for AHS
applications. Furthermore, the local observability condition for
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the system may be extended to all the operating range for all
values of the control input, by considering higher derivatives
for the observability matrix

APPENDIX A
DERIVATION OF THE LIMITING FUNCTION

From (14) and (15), we have

(A1)

and

(A2)

The estimations of the functions parameters
and the function are needed to evaluate The first
function is defined as

(A3)

The uncertainty in is due to the parameter We define
the estimated value of as

with (A4)

We neglect the effect of the wheel viscous friction by setting
the function equal to zero. The uncertainty limits for
the parameters are also assumed to be known

(A5)

We define estimated values of these parameters as the geo-
metric mean of the bounds

(A6)

Similar definition is assumed for

(A7)

The estimated value of the function is calculated using a
nominal curve. The maximum and minimum peak values
of for dry and wet asphalt are 0.9 and 0.5, respectively. We
take a peak value of 0.7 for the nominal curve, and evaluate

using the resulting curve

(A8)

Based on these definitions, the error in estimation is

(A9)

Assuming that the estimation error for all parameters is
and using (A5) and (A6), we can write

(A10)

Defining

(A11)

we get

(A12)

Similarly

(A13)

Then

(A14)

Taking the absolute value of both sides, we obtain

or

(A15)

We simply define the function as equal to the sum on the
right. Note that all the values in (A15) are known. The actual
values of the parameters and/or functions are replaced by their
maximum possible values keeping the ’greater than’ sign. The
calculated value of the limiting function is used to evaluate
the gain and then the control input, using (20) and (19).

APPENDIX B
JACOBIAN OF THE OBSERVABILITY MATRIX

Observability matrix of size three is given in (29) as

(B1)

The Jacobian of this observability matrix, is then

(B2)
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where, again neglecting is calculated as

(B3)

Element (2,1) of the Jacobian of the observability matrix is
zero whenever i.e., at the peak of the
curve. Otherwise, the rank of the matrix is two and the system
is observable. Furthermore, at the peak of the curve,
the element (3,1) of the matrix, namely can be evaluated
as follows. Since some of the terms in (B3)
drop and we are left with

(B4)

In this term, the parameter partial derivative
[according to (9)], and the second derivative are non
zero. For our definition of the function, this can be seen
easily

(B5)

Therefore, the second derivative ofis zero if and only if

or

(B6)

This condition is also satisfied since the point where
is the peak, and the second derivative cannot

be zero to satisfy the local minimum (or maximum for
acceleration case) condition. Therefore, if we can prove that
the sum below [i.e., third term in A; see (B4)] is not zero at the
peak, then we would guarantee the rank condition necessary
for the observability of the system, since we would prove
that the term is not zero whenever element (2,1) of the
Jacobian is

(B7)

Thus, the system isnot locally observable only if we operate at
the peak of the curve,and the input is kept at a constant
value given in (B7). Obviously, this is a very rare case. Even
if this situation occurs, the error in the state estimation will
grow and the input torque value will immediately change. Also
note that we only considered an observability vector is size
three here. It may be possible to meet the rank condition by
considering higher derivatives of the output
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