IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999 271

Sliding Mode Measurement Feedback Control
for Antilock Braking Systems

Cem Unsal, Member, IEEE,and Pushkin Kachroaylember, IEEE

Abstract—We describe a nonlinear observer-based design for

control of vehicle traction that is important in providing safety d Sliding Mode T Vehicle

and obtaining desired longitudinal vehicle motion. First, a robust o > >
sliding mode controller is designed to maintain the wheel slip »  Controller Model y=x
at any given value. Simulations show that longitudinal traction

controller is capable of controlling the vehicle with parameter l

deviations and disturbances. The direct state feedback is then -

replaced with nonlinear observers to estimate the vehicle velocity A XL X —= Nonlinear

from the output of the system (i.e., wheel velocity). The nonlinear max(xl,xz) Observer

model of the system is shown locally observable. The effects and

drawbacks of the extended Kalman filters and sliding observers
are shown via simulations. The sliding observer is found promis-
ing while the extended Kalman filter is unsatisfactory due to
unpredictable changes in the road conditions.

Fig. 1. The structure of the controller/observer system.

Index Terms—Adaptive control, nonlinear observers, state es- acceleration of the vehicle to estimate the wheel slip. Vehicle

timation, variable structure systems, wheel slip control. traction control can greatly improve the performance of vehicle
motion and stability by providing anti-skid braking and anti-

spin acceleration. The design of traction controller is based

|. INTRODUCTION on the assumption that vehicle and wheel angular velocities

HE control of around vehicle motions is becomin irnare both available on-line by direct measurements and/or

I 9 . MING 1M qimations. As angular wheel velocity is directly measured,

portant due to recent research efforts on intelligent trans- . e . :

. . ; only vehicle velocity is needed to estimate wheel slip. Two

portation systems, and especially, on automated highway s

tems [10], [8], [22]. In order to implement an advanced vehiclééjthe many methods for.est|mat|ng.the vehicle velocity are
Using magnetic markers imbedded in the pavement and the

control system while obtaining desired vehicle motion, an . . .
se of an accelerometer to calculate velocity by integration

providing safety, vehicle traction control should be realize Both methods have drawbacks: one requires an accurate
Traction control systems can be designed to satisfy vario ; ; . ' q
nsing system and infrastructure, the other frequent updates

objectives of a single vehicle system or a platoon of close f lati Fint i
spaced vehicles, such as assuring ride quality and passe gefraus_e ot accumulation ot integration errors. .
n this paper, we will show that both wheel and vehicle

comfort. .
Vehicle traction force directly depends on the friction Cogpeeds (states of the nonlinear system model) are observable

efficient between road and tire, which in turn depends on t em the output (wheel angular speed) for our vehicle and

wheel slip as well as road conditions. It is possible to ianuen(‘,’@?el dynamics mgdel. Conventionall ABS.systems HSEVE
traction force by varying the wheel slip, a nonlinear functiofpCity and acceleration data of the vehicle with a lookup table

of the wheel velocity and the vehicle velocity. A sliding modd® calculate braking torque (or brake pressure) value. The
controller to maintain the wheel slip at any given value i@m of these controllers is to maintain the wheel slip at the
designed by Kachroo and Tomizuka [5]. This longitudind?®@k Of[ — A] curve (as discussed in Section II), but due

traction controller is found to be giving better results thalf the qualitative design, that is not always guaranteed. We
the conventional controllers are. On the other hand, a typid{PPose that an analytic design with full state feedback that

ABS system can only sense the angular wheel velocity and¥¥l improve the performance of ABS; but we will try to obtain
similar results using only partial state feedback. The overall

system structure is given in Fig. 1.
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TABLE |
WHEEL AND VEHICLE PARAMETERS

Dry Pavement

W Angular speed of the wheel
Jw Moment of inertia of the wheel = Wet
T Shaft torque from the engine o
T, Brake torque S (Acceleration)
. 5 Unpacked Sno
T Radius of the wheel g
Fy Tractive force b=
Fu Wheel viscous friction
Ny Normal reaction force from the ground - - >
wy Angular speed of the vehicle (13)3;11;::;)3% Wheel Slip (1) !
Fy Wind drag force (function of vehicle velocity)
M, Vehicle mass . . . -
Ny Number of driving wheels (acceleration) or the total number of Fig. 2. Typicaly — A curves for different road conditions.
wheels (braking).

Similarly, when a braking torque is applied, it produces a

In the next section, we introduce the system dynamics affision at the tire tread within the contact patch and at the
resulting nonlinear differential equations. The use of indin&om- Because of this tension, the tire travels more distance
mode control for the system at hand, simulation results f8#an it would during free rolling. This phenomenon is called
the controller, discussion on the observability of the systeffie deformation slip owheel slip[19], [23]. Mathematically,
and nonlinear observers will follow. Simulation results withhe wheel slip is defined as

observers in the feedback loop are given in Section VII. P e B
Appendix A includes the derivation of the limiting function for  max{wy,w, }
the sliding controller, while Appendix B details the necessalyre.  is the vehicle angular velocity
steps for checking the observability of the system. v
= ©
Il. SYSTEM DYNAMICS Tw

d(\érllich is equal to the linear vehicle velocity divided by the

In order to design a controller, a good representative mo . . 7
g g P rr]%dlus of the wheel. The tractive force is given by

of the system is needed. In this section, we will describe t
mathematical model for vehicle traction control. This model Fy=pu(X) - Ny 4)

will then be used for system analysis, design of control lawghere the normal tire reaction forc¥,, depends on vehicle
and computer simulations. The model described in the papgarameters such as the mass, location of the center of gravity,
although relatively simple, retains the essential characteristigsq the steering and suspension dynamics. The adhesion
of the actual system. We will not discuss the stability of thgpefficient,, which is the ratio between the tire tractive force
system, but only state the necessary conditions. and the normal road, depends on the tire-road conditions and

Our model identifies the wheel speed and vehicle speedgg yalue of the wheel slip [3]. Fig. 2 shows a typical — \
state variables, and the torque applied to the wheel as gve [20]. A more mathematical description of the tire model
input. The state equations are the result of the application;g@fjescribed by Peng and Tomizuka [13]. In our simulations,
Newtqn’s law to wheel and yehicle dynamics_. The dynamig,e functionz(A) = (2u,\pA/A2 + A2) is used for a nominal
equation for the angular motion of the wheel is given as  ¢rye. wherey, and A, are the peak values. This function
« L =Ty —r, (I + Fy) (1) gives values compatible with experimental data given in the
W Jw ' literature [23], especially in the rangee [0 0.3].

All the quantities in this equation are defined in Table I. For various road conditions, the curves have different peak
The total torque consists of shaft torque from the enginealues and slopes. The adhesion coefficient—wheel slip char-
which is opposed by the break torque and the torque cormsteristics are also influenced by operational parameters like
ponents due to tire tractive force and wheel friction forcepeed and vertical load. The peak value for adhesion coeffi-
The wheel viscous friction force developed on the tire-roadent may have values between 0.1 (icy road) and 0.9 (dry
contact surface depends on the wheel slip, which is definedasphalt and concrete; see Fig. 2).
the difference between the vehicle and tire speeds, normalized he model for wheel dynamics is given in Fig. 3. The figure
by the maximum of these velocity values [vehicle speed fshows the parameters in Table | for acceleration case, for
braking, wheel speed for acceleration; see (2)]. The engiwhich tractive force and wheel friction are in the direction
torque and the effective moment of inertia of driving wheedf motion. The wheel is rotating in clockwise direction, and
depend on the transmission gearshifts. slipping against the ground (i.ew, > w,). The slipping

Applying a driving torque or a braking torque to a pneumatigroduces the tractive force toward right causing the vehicle to
tire produces a tractive force at the tire-road contact patelcelerate. In the case of deceleration, the wheel still rotates
[23]. The driving torque produces compression at the tire treadthe clockwise direction, but skids against the ground (i.e.,
in front and within the contact patch. Consequently, the tite,, < w,). The skidding produces the tractive force toward
travels less distance than it would if it were free rollingleft causing the vehicle to decelerate.

w
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Fig. 3. Wheel dynamics.

The linear acceleration of the vehicle is governed by the
tractive forces from the wheels and the aerodynamic friction _ _
force. The tractive forcd, is the average friction force of the 79- 4. Vehicle-Brake-road dynamics: One-wheel model.
driving wheels for acceleration and the average friction force
of all wheels for deceleration. The dynamic equation for the The block diagram representation of the combined dynamic
vehicle motion is system is shown in Fig. 4. The control input is the applied

torque at the wheels, which is equal to the difference between
(5) the shaft torque from the engine and the braking torque. During
acceleration, engine torque is the primary input where as

The linear acceleration of the vehicle is equal to the diffetturing deceleration it is the braking torque. The wheel slip
ence between the total tractive force available at the tire-rogdchosen here as the controlled variable for traction control
contact and the aerodynamic drag on the vehicle, divided Bigorithms because of its strong influence on the tractive force
the mass of the vehicle. The total tractive force is equal tetween the tire and the road.
the product of the average friction forcg; and the number  we will first assume that wheel slip is calculated from
of relevant wheelsV,,. The aerodynamic drag is a nonlinea(2) by using the measurements of wheel angular velocity
function of the vehicle velocity and is highly dependent oand the estimated value of the vehicle velocity from either
weather conditions. It is usually proportional to the square ge accelerometer data or the magnetic marker data. Then,
the vehicle velocity. instead of the full state feedback, we will use a more realistic

model output, where only the wheel velocity is measured, and
A. Combined System and the Slip insert a nonlinear estimator into the feedback loop (Fig. 1).

The dynamic equation of the whole system can be written By cpntrolling .the wheel slip, we control the trac_tive force_ Fo
state variable form by defining convenient state variables. \g@tain the desired output, namely wheel and vehicle velocities,

chose the state variables as the wheel and vehicle velocitid©™ the system. In order to control the slip, it is convenient to
v have the system dynamic equations in terms of the wheel slip.

Tl =Wy = —  To = Wy (6) Since the functional relationship between the wheel slip and

Tw the state variables is different for acceleration and deceleration,

Now, we can rewrite (1) and (5) as we will only derive the equations for the deceleration case. The
dynamic wheel slip equation for the acceleration case is also

. N,F, - F,
V= twetT oy
M,

&1 =—fi(w1) + by - p(A)

given, without derivations. During deceleration, the condition

By =—folxo) — ban - pw(N) + b3 - T (7) x2 < a1 is satisfied, and therefore the wheel slip is defined as
ro — X
where A= % (9)
1
T=T -1, Taking the time derivative, we obtain
_F'v(fwxl) to — (1 — z
Al === joo P2= (=N B (10)
o — 1 L1
- (z:) Substituting (7)—(9) into (10), we get (11), shown at the
i bottom of the next page. This gives the wheel slip equation
bin = No N for deceleration case. The equation is nonlinear and involves
My uncertainties in its parameters. The nonlinear characteristic
fala) = Fy(x2) equation is caused by the following factors.
Jw 1) The relationship of wheel slip with wheel velocity and
byn = TwlVy by = L. (8) vehicle velocity is nonlinear.
o o 2) Thepu — X relationship is nonlinear.
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3) There are multiplicative terms in the equation. b= vVbmaxbmin, 1S taken as the estimate 6f The controller
4) Functionsfi(z1) and f2(z2) are nonlinear. is designed as
In the case of acceleration, the equation is also nonlinear Tew-z (17)
and involves uncertainties as shown in (12) at the bottom of !
the page. The local stability of the nonlinear system can Rghere
studied by linearizing the system around its equilibrium point. R
Kachroo and Tomizuka [4] stated that the system is stable in w=b"""[a—ksgn(s)] and (18)
the deceleration case if the following condition is satisfied: i = _f - }\d_ (19)
dafy (z10) + a2 (220) A finite time is taken to reach the switching surface and
by + bon - x_éo S do da: . (13) the stability of the system is guaranteed with an exponential
220 20 ‘% convergence once the switching surface is encountered, if the
oA sliding gaink is chosen as
In the acceleration case, similar (but slightly different) con- E>a-(F+n)+(a—1)-4 (20)
ditions are obtained, using the eigenvalues of the Jacobian
matrix for the nonlinear system. The condition of gairk is direct result of the condition for the
sliding variable outside of the switching surfaSés)
lll. SLIDING MODE CONTROL OF THE WHEEL SLIP 1d ,
, : S s <nls| (21)
For wheel slip control, a nonlinear control strategy based on 2 dt

sliding mode is chosen. Sliding mode controllers are knowhat guarantees finite time to reach the surface if the initial

to be robust to parametric uncertainties [17]. The following igacking error is not zero. By integrating the condition above,

the derivation of the sliding mode control law for wheel sligand considering both negative and positive tracking errors, the

regulation. The slip dynamic equation for deceleration (13gllowing bound on the time interval to reach the surface is

can be written as obtained [17]:
A=f+b-u (14)

t < (22)

where o .
Switching control laws are known to be not practical to

f= A+ N - filer) = folwe) = [ban + (T +A) - bin] - p(N) implement because of chattering. Chattering is caused by

1 nonideal switching of the variable around the switching
” :z b= bs. (15) surface. Delay in digital implementation cause$o pass to
z1 the other side of the surfac&(¢), which in turn produces

chattering. A practical approach for avoiding chattering is to
introduce a region around(t) so thats changes its value
continuously [5], [6]. A boundary layer of fixed widtkp
around the switching surface, and the functibsut(-) is
defined as

Since the system is of first order, the switching surface)
is defined by equating the sliding variable defined below,
to zero

d -1
s(A,t)z<£+A> A=A)=A-X=A (16)

as b (1
tsat(a,b,s,¢) = @ + @ /0 sdt, for[s| <¢ (23)

where \; denotes the desired slip, and is the error. The )
? sgn(s), otherwise.

nonlinear functionf is estimated asf, and the estimation
error onf is assumed to be bounded by some known functiothe parameters and b are

F, so that|f — f| < F. (See Appendix A for the derivation )

of F(z) for this particular application.) The control gabnis _ 29 _e (24)

bounded a® < byin < b < byax. The control gainb and k(Aa) k(Aa)

its bounds can be time varying or state dependent. Since )y the definition of the control input is changed to
control input is multiplied by the control gain in the dynamics, .

the geometric mean of the lower and upper bounds of the gain, w=">0""-[0—k-isat(a,b, s, )] (25)

[(L+N) - filz) = folz2)] = [bon + (1 = A) -bin] - p(A) + 3T

1

A= (11)

[fi(z) = A =N - fol@2)] = [ = A) -bon +ban] - p(A) + b3 - T

A=

(12)
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t(séc) t(séc) Fig. 6. Simulation results: (a) vehicle and wheel speeds, (b) wheel slip, (c)

braking torque, and (d) sliding variable as functions of time.
(© (d)

Fig. 5. Simulation results: (a) vehicle and wheel speeds, (b) wheel slip,

braking torque, and (d) sliding variable as functions of time. ﬁélay to the applied torque, which would cause a longer time

interval to reach the switching surface.
The function isat used in the boundary layer eliminates the
The bandwidth of the filter for variable is given by R]. chattering; the applied torque is smooth. The sliding variable
Note that the second term in (25) acts as a Pl controller jggches the boundary layer, and then approaches zero.
the regions < [¢|. The first term, given by (19), attempts to | the simulation example given in Fig. 6, the maximum
cancel the nonlinear term in (14), and further adds the desifgglque value is increased. Thus, the time to reach the desired
dynamics. If the cancellation of the nonlinear term is perfegiglue of the wheel slip is distinctly less than the previous
ie., f—(b/b) f=0,(14), (19), (23), and (25) will result in @ example. In this case, the desired wheel slip is reached in
linear error equation with no forcing term, which implies thagpproximately 0.1 s. Fig. 6 also shows the effect of the change
the slip error as well as the sliding variabigall converge to jn the function parameters, road surface conditions and desired
zero. However, the cancellation can never be perfect, whigheel slip. Betweert = 0.4 s andt = 1 s, the value of
can be easily understood by the presence(@f) in (15). The the parameteb,y is changedt10%. The applied torque is
integrator can absorb the error due to imperfect cancellati@ﬁanged to compensate for these changes as seen in Fig. 6.
and assures superior performance. The wheel slip (and the sliding variable) does not show any
significant deviations. Arountl= 1.5 s, we simulate a change
IV. SIMULATION RESULTS WITH DIRECT STATE FEEDBACK in the road conditions: Peak value of the— \ curve is

Fig. 5 shows the result of a simulation for which the initiaflécreased from 0.8 to 0.5. (The vehicle travels along an icy
and desired values of the wheel slip ar®.02 and—0.12, 'patch' for approximately 0.5 s.) Again, t.he controller ou.tpu.t
respectively. In other words, the vehicle is already braking, bt quickly charjged to compensate, Wh.I|e the wheel slip is
a better traction value is required. Maximum braking torquéhaffected. Third, we increase the desired value of the slip
is limited at 1000 Nm. Also note that the peak value of thadroundt = 2.1 s. The braking torque drastically increases to
nominal curve used in the sliding mode controller is 0.7, whilgive the variables to the sliding surface, and the new value
the actual road conditions is simulated using a peak valuei®fféached again in less than 0.1 s.

0.8.
The plot of the vehicle and wheel velocities in Fig. 5 V. OBSERVABILITY OF THE SYSTEM

indicates that the braking action causes the wheel slip to reackrg pe able to use an estimator for the states of the dynamic
its desired value quickly. The average deceleration for the fifggodel, we first have to prove that the states are observable
second is approximately 0.56 g. As seen in the second figufigm the output. The wheel angular speed that can be easily
the time to reach the boundary layer is larger than the valigsasured is defined as the output for the vehicle model we

given by, < (|s(0)[/n) = (0.14/1.5) ~ 0.1 s. This is due described in (7). Thus, the system equations become
to the fact that the control input is limited. Furthermore, this

example assumes no rate of change limitations on the applied &= f(z)+g(x) - u
brake. It is possible for the braking mechanism to introduce a y =h(x) (26)
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where, from (7), the functiong, g, h are defined as as others. We use and compare extended Kalman filter and
sliding observer for our state estimation, and briefly introduce

these methods here.
h(z) =[01] - Ej =

fz) = {_fl(xl) T N()\(xl’m))} 9(z) = [0 } -
—fa(x2) — by - p(A(w1,22)) bs A. Extended Kalman Filter
(27) Kalman introduced the concept of an optimal linear filter
in 1960 [7]. Kalman filter is known to minimize the mean

For the system given in (26), it has been proven that the systgéguare estimation error, and assumes that the dynamic system
is locally observableat z,, if the dimension of the Jacobian ofwhose states are to be estimated can be described as a set of
the observability vectorlim dO(z,) is equal ton, wheren is  linear differential equations. A natural extension of this filter
the dimension of the output set, and observability ve€tor) is extended Kalman filtef2], [18], which we choose as one
is constructed with repeated time derivatives of the outpat our observers. For a system model given as
vector [13]

o(t) = f(x(t).t) +w(t) w(t) = N(0,Q))
o) =y 9 i 1" (28) y(t) =h(z(t),t) + v(t) v(t) = N(O,R(t))  (31)

It is important to note that, unlike linear systems, the rank cofpherez € ®*,w € ®*,y € R, v € R, m < n, andw

dition, dim dO(x,) = n, guarantees only local observability.andv are zero mean Gaussian noises with uncorrelated noise
A good treatment of the subject can be found in [12]. Let Ugtensities) and R, the initial conditions are assumed to be
consider the first three rows of the observability matrix. Usiryg(()) = N(io, Py). For this system, the filter is given as

the (27), we obtain

\ o o b= (0.8 + K(2) - [y(2) - h(E(0), )]
ONx)=ly ¥ 4" =[xz &2 o] (293) g4y = P(t) - HT(2(8),8) - R™(8)
SO .
wherez, and z, are known, and the third term is calculated P(t) = F(x(t), ¢ TPA(t) + P(t)_lF (x(t)it) +Q()
as follows: —P(t)- H* (2(2),t) - R™°(¢) - H(2(¢), ) - P(¢)
(32)
. di OA dfs di 9
Fr=—bon v o x2— | - tben 5y 5 ) )
d\ Oz 02 d\ Oz where I and H are the Jacobians of the functiorisand A,

“(=fa(za) — bany - p(N) + b3 - T). (29b) respectively. Note that the functiords and H are evaluated
at z(t) = #(¢). From (8) and (27), we obtain (omitting the
The Jacobian of the observability mat@O(z) is then (See termst for clarity)
Appendix B for the evaluation of the termd) shown in (30)
at the bottom of the page. The Jacobian looses rank wheney&: (t))

the element (2,1) andi are both zero, and it is full rank 2C,Tw 1 dp OA dyp 9
otherwise. We show, in Appendix B, that these two terms are |~ A7, +biy - N or, bin - d\ ox

never zero at the same time. This proves that the system is . W OA oW OA
locally observable everywhere. Therefore, it is possible to use NN Ox, NTAN T 0zg L lams

a nonlinear observer to estimate the states of the system using  H(&(¢)) = [0 1]. (33)
only the output, i.e., the wheel speed.

The correlation matrix elements; can be evaluated using
(32). The extended Kalman filter is widely used. However,
VI. NONLINEAR OBSERVERS there are some drawbacks that make this filter nonfeasible for
Many researchers have worked on the development of stat§ application [9].
estimators for nonlinear and/or uncertain systems. Misawa anad P is only an approximation of the true covariance matrix
Hedrick [9] gave a state-of-the-art survey of the nonlinear and thereis na priori performance or stability guarantee.
observers. This work discusses several different methods in- In our application, the values for the covariance matrix
cluding extended Kalman filter and sliding observers as well are stable.

0 1
dp  OA g

dO*(z) = |ban - d_/; 911 Ony {=fa(z2) = ban - pu(A) + b3 - T} (30)
A B
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¢ E:g)ﬁ:ggg i(s31a)sz‘:]?n((;jz)I’:g\:‘etﬁiese‘;ggﬁ;gﬁopner{ﬁgies)ilztir;:mvelocities Pt - x1h—-x2-.x2h ] Igmbda versus time freal - model -]
way of knowing the operation point on the— X curve,
and therefore, the estimator uses the nominal values
However, the value of the adhesion coefficient calculated
from the nominal curve may differ from the actual value, “°
thus resulting in a modeling error. 0

e EvaluatingF" and H atx = & can introduce (even if is (@) (b)
the exact model) arbitrarily large errors.

80} 005

01H -

0 -

B. Sliding Observers ~1000!-

Sliding observers are nonlinear state estimators based on
the theory of variable structure systems [15], [21]. It was?[ ; ; gamma:QSO
suggested by Slotinet al. [16]. For annth order nonlinear 0 1 2 Y9 05 1 15 2
system of the formi = f(z,t), € R*, and a vector © d
of measurements that is linearly related to the state vector
y = Cx,y € R, we define an observer of the following estimation errors [x1 -, X2 - ] P11-p12-.p21 ]
structure: T 01 o

x-tilda

o e N
&= f(i,t) - HC(@ - x) - K1, (34) 1\ 0.0_05\\ _________

wherez € §R”,f is our model off, H, and K aren x m gain “0 1 2 o 05 1 15 2
matrices to be specified, arg is anm x 1 vector defined as © ®
Fig. 7. Simulation results: (a) Vehicle and wheel speeds, (b) wheel slip, (c)

sign@l) Sat(g1) braking torque, (d) sliding variable, (e) estimation errors, and (f) covariance
1, = |sign(go) orl, = [sat(g2) (35) matrix elements as functions of time.

where Af; are the error between the observer dynamics (36)
and the actual system dynamics (27) as defined in (39). Using

wherey; = C - (2 — ). (40), we obtain the following:
For our single measurement system, the observer equations
X k X
are . a:lefl—k—;-Afg iy =0. (41)
@1 _ E1(5717372) _ hy [01]
To | | Fo(E1,%0) ho As seen from the (39)—(41) above, not much can be said

i—a ket _ about the gainsh; and k;. The method for finding the gain
: [ } - L@} -sign(®2 —z2)  (36) matricesH and K for linear systems is given by Misawa and
Hedrick [9]. However, the equations to be solved are based on
where F; are estimates of the functions in (27), evaluated 1€ Jacobian of the functiofi, and thus, are very difficult to

the estimated points. When the sliding variable is chosen s@ive in our application. Furthermore, the indirect effects of the
being equal to the measurement error states on the wheel slip, and consequently, friction coefficient

complicates the matter. Therefore, we choose the values of
§=0C-(i—z). (37) the four gain coefficients by trial-and-error. The values for the
second state (wheel angular speed), which is the measurement
The sliding condition from the system, are easily found for a stable response. The
coefficients for the first state (vehicle angular speed) are more
5:$<0 (38) difficult to set.

S

on the sliding surfaces = 0, will guarantee that the state

. ) VII. SIMULATION RESULTS WITH THE OBSERVERS
observations will match the actual values. In our case, the

sliding condition becomes Fig. 7 shows the result of a simulation where the extended
Kalman filter is used for state estimation. Since the system
Fo- ((Fy — fo—bg - w) knowledge is not perfect, i.e., the evaluation of the adhesion

(39) coefficient is erroneous, the controller cannot drive the wheel
slip to desired value. As seen in Fig. 7, when the peak values
where; = #; — ;. The equivalent control method given byfor the i — A curve are not the same for the actual model

Utkin [21] provides the approximate 5||d|ng dynamics as and the nonlinear estimator (0.8 and 0.7 for this example), the
wheel slip cannot reach the desired value; there is a steady-

i=(I-K(CK)0) - Af (40) state error. The estimation error in wheel velocity is driven to

— Dy - &2 - sign(dz)) < 0
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velocities [x1 -, xth—-x2-.x2h ] lambda versus time [real -. model -] * Sliding mode controller based on mathematical deSign
100 0 gives satisfactory results for this application of vehicle
I traction control. Desired wheel slip value for maximum
\h.,:\\ 01 e deceleration can be achieved in minimum time, provided
60 A S \ that the braking system is capable of producing the
40} — 02 B required torque.
* Since current ABS methods of measuring the vehicle
@ (®) speed are not perfect, an analytical observer may provide
a better system performance. Furthermore, although the
0.02 \ use of magnetic makers and magnetic strips for vehicle

speed detection are shown to be feasible [11], the failure
of these systems may lead to catastrophic collisions in
an automated highway system. Therefore, an analytic
observer based design for anti-lock braking system may
prove to be very useful as a backup system.
(c) (d) » The performance of extended Kalman filter is poor,
mainly due to the modeling errors, which we may not
™ Sign function used escape for applications in vehicle traction control.
inthe estimator « Sliding observer seems to be a good choice for this
0 * Gamma = 250 in application, since it is shown to be robust against bounded
the controller modeling errors as described in Sections VI and VII.
P *x_tilda = x - x_est However, the complicated system model renders the
0 1 2 analytic computation of gain matrices difficult.
(e) Furthermore, the steady-state estimation error for nonlinear
Fig. 8. Simulation results: (a) Vehicle and wheel speeds, (b) wheel slip, @iding observer is partially due to the error bounds defined
braking torque, (d) sliding variable, and (e) estimation errors as functions fgr several parameters, as well as the definition of ghe A
time. function estimate. A decrease in the estimation error range

Lo . results in a relatively less estimation error in vehicle speed.
zero due to the fact that wheel velocity is measured; however -
o . . lthough the sliding controller and the observer are able
the estimation of vehicle velocity has a steady-state errQr. : . o
= ; 0 handle slight changes in the road surface conditions, the
Receiving only the estimated values from the observer, the . .-
o R L efror bounds on thg: — A function are not sufficient to
sliding mode controller “thinks” that the wheel slip is at the - .
. ) compensate for significantly large changes in the road surface
desired value of-0.12 [Fig. 7(b)]. - . ;
' characteristics. Some form of information about the road
The performance of the extended Kalman filter for this .
- . . . . Surface may therefore improve the robustness of the wheel
application being unsatisfactory, the estimator is replaced by a

o . : . Slip controller, since it will enable us to adjust the function
sliding observer. Fig. 8 shows the result of a simulation with ". ~~ . .
2 . ._estimation accordingly, and decrease the error range on the
the sliding observer where desired value of the wheel sllp#s

changed from-0.2 to—0.1 after 1 s. The gain coefficient for Unction estimation with the addition of this new information.

the observer is found by trial-and-error method. The chatterirg/l%et;hc(:%sn described in [14] can be used for road surface

is due to the use of the saturation functiem(s) that does The local abservability proof of the system is based on

not include the integral term. Replacing this function with thﬁ1e simple dvnamic model we assumed. and the functional
tsat(s) would eliminate the chattering, but the determination pie dy '

of (more) gain coefficients for the observer would make the presentatlpn of the: B A curve. (_:hang_es In _the system
s . e model and in the function description will obviously affect
initial design more difficult. the proof of observability. However, we believe that the lon-

The performance of the sliding observer is satisfactory. The P Y. '

i . o - ; itudinal model we employed is representative of the vehicle
error is the wheel slip estimation (and the sliding variabl o ;
) . - . ; aracteristics as long as the lateral movement of the vehicle
is minimal. Sliding observer is able to rack vehicle spee

(unobserved state) even though the initial estimates for {an be neglected. In addition, the functional representation

states are different than the actual values [Fig. 8(e)]. Tr?]ethe adhesmn_ c_oefﬂment s a good representation of th_e
eel characteristics, especially for the range the wheel slip

response of the system to changes in the desired value of &
D : antroller would operate.
wheel slip is comparable to the full-state feedback design. T ) . . . .
) S . . he work presented in this paper will be continued in
steady-state error in the estimation of the first state is probakﬂlye

due to the choice of the gain coefficients for the matriées f”t!‘re-. Our researc_h IS d!rected toward. t_he analytical
and K. determination of the gain matrices for the sliding observer.

If we can determine the gain coefficients analytically so that
the error dynamics is stable, then our method of controlling
vehicle traction for antilock braking may be a better solution to

There are four main conclusions resulting from the worthe optimal braking problem, and a safety alternative for AHS
presented here. These are the following. applications. Furthermore, the local observability condition for

-1000

Ot

-2000 TrommmyTTTTT

estimation errors [x1 -, x2 -]

x_filda

VIIl. CONCLUDING REMARKS
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the system may be extended to all the operating range for @kfining
values of the control input, by considering higher derivatives

for the observability matrix03(x). = <bm max)l/2 (A11)
L bi]\f min
APPENDIX A we get
DERIVATION OF THE LIMITING FUNCTION F'(x) 9
From (14) and (15), we have [3‘_1 < EJU\T < [31 (A12)
1 ‘ bin
f=—(1+X) - fi(z1) — falz2) .
1 Similarly
— [b2n + (1 4+ A) - b1n] - 11(N)) (A1) Lo
and Brl< @ < = <CC X) . (A13)
. 1 . . Cy Cy min
=— ((14+XN)- filz1) — fol=x
f o E( ) - fa( 1)A fa(a2) Then
= [ban + (1 4+ A) - ban] - f1(A))- (A2) o (Foi1)?
The estimations of the function§, parameters; x (i = 1,2) f=7= x1 {(1 A ew =) My

and the functionu()\) are needed to evaluatf. The first +(=ban -+ A4+ N by - p)
function f; is defined as

Fo(rwz1)  co(rem)?
Myro, — Myry,
The uncertainty iry; (x4 ) is due to the parametey. We define

+ (bany i = (14 A) - bay - m.} (A14)
fi=

(A3)
Taking the absolute value of both sides, we obtain

the estimated value of, asct . Twt1)?
: 1= A= A e = ] 2
s ey (rpmr)? with ) (A4) |1 vTw
fl_m Cmin < € < Cmax- +|_b2]\r N‘i‘(l‘i‘)\)le\’M
We neglept the effect of the wheel viscous fric_tion py.setting + |52N i— (14N by - lfb|}
the function f2(z2) equal to zero. The uncertainty limits for
the parameters;y are also assumed to be known or
- - bzn min < biN < biN max- (A5) _ |f f| 1 |1 " )\| |/3CAD| ) (7>w$1)2
We define estimated values of these parameters as the geo— | 1| M7y
metric mean of the bounds + |Boban| - |pmmaxN)] + (14 A) - Brby
gi — bz / min ° bz / max 1/2- A6 7 ~ 7 ~
~ = (Binvmin - it ) (A8) Nttmax )+ Pt — (14 ) - bux } (A15)

Similar definition is assumed foro

/2 (A7) We simply define the functiof’(x) as equal to the sum on the
right. Note that all the values in (A15) are known. The actual
The estimated value of the functigi{A) is calculated using a yajues of the parameters and/or functions are replaced by their
nominaly— A curve. The maximum and minimum peak valuegaximum possible values keeping the 'greater than’ sign. The
of 1« for dry and wet asphalt are 0.9 and 0.5, respectively. W@ |culated value of the limiting function is used to evaluate

take a peak value of 0.7 for the nominal curve, and evalugf gaink()\), and then the control input, using (20) and (19).
f1(A\) using the resulting curve

éb. = (C'u min * Cv max)

_ 2 APPENDIX B
(N 5 5 (A8)
)\p +A JACOBIAN OF THE OBSERVABILITY MATRIX
Based on these definitions, the error in estimation is Observability matrix of size three is given in (29) as
f-F= ((1 +A) - [fulz) = fula)] ONa)=Tly 9il" =[w2 &2 ia. (B1)
- (bm = bon - 1) The Jacobian of this observability matrixQ?(x), is then
+ (1 + )\) . (blj\f S = bin - Tﬁu)) (A9) dO?’(x)
Assuming that the estimation error for all parameteek28%, 1
and using (A5) and (A6), we can write _ 1y du ﬂ O [ =fa(xa) = ban - (V)
b N2\ 12 TN AN dey O, by T
< iN mm) < Az]\ < < i N max) ) (Alo) A B
bi N max bz N b7 N min (BZ)
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where, again neglecting;(z2), A is calculated as

A= (B2 0 Y
Oz ‘ d\2 Oxy  OX Ox?
(i 21 0
dX 8371 8372
(B OV N 02
2A"<dx2'ax1'ax2 dA'axlax2>
“(=bon -+ b3-T)
o 2 (2, 22
dX 8.1‘2 dX 8351 8351
(B3)
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Thus, the system isotlocally observable only if we operate at
the peak of the, — A curve,andthe input is kept at a constant
value given in (B7). Obviously, this is a very rare case. Even
if this situation occurs, the error in the state estimation will
grow and the input torque value willimmediately change. Also
note that we only considered an observability vector is size
three here. It may be possible to meet the rank condition by
considering higher derivatives of the output
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zero wheneveldu/d)\) = 0, i.e., at the peak of the, — A
curve. Otherwise, the rank of the matrix is two and the system
is observable. Furthermore, at the peak of the X curve,

the element (3,1) of the matrix, namely, can be evaluated [1]
as follows. Sincgdx3/9z1) = 0, some of the terms in (B3)

drop and we are left with 2l

o B2y 9N
A= S Sl s [3]
8351 b2]\ d)\2 8351 2
2y 9N A
RO 9Ny T [4]
ban DE 9o, Omg (=banp(A) +b3-T)
A2 OX
=—byn - —— (5]
PN O

(=ban - p(A) + b3 - T>~ (B4)

9N)
(e 2.
In this term, the parametdr,y, partial derivatived\/9z;
[according to (9)], and the second derivati¥®:/d\? are non
zero. For our definition of thg — A function, this can be seen
easily

(6]

(7

(8]

() = 2upApA _ ad dp _a(b=X)  dp [l
PYVZNER T0e 2 T T a2 N

20+ A2) - [(b+ A2) + 2(b— A2)] ©5) [10]

(b + A2) ' [11]

Therefore, the second derivative pfis zero if and only if  [12]

(b+A)+2(0+ X)) =3b—A2=0 or A=+)\,V3.
(B6)

(13]

[14]

This condition is also satisfied since the point whergg,
(du/dX) = 0 is the peak, and the second derivative cannot
be zero to satisfy the local minimum (or maximum fot6l
acceleration case) condition. Therefore, if we can prove that
the sum below [i.e., third term in A; see (B4)] is not zero at thE-7]
peak, then we would guarantee the rank condition necessgry
for the observability of the system, since we would prove
that the termA is not zero whenever element (2,1) of thegg}
Jacobian is

24 DX oo (0 + bsT) =0 & 7 [21]
8.1‘2
[22]
= (=maz1 + banvp(N)). (B7)
3 [23]

valuable guidance.
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